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The propagation of guided internal waves on non-uniform large-scale flows of 
arbitrary geometry is studied within the framework of linear inviscid theory in the 
WKB-approximation. Our study is based on a set of Hamiltonian ray equations, with 
the Hamiltonian being determined from the Tayloraoldstein boundary-value 
problem for a stratified shear flow. Attention is focused on the fundamental fact that 
the generic smooth non-uniformities of the large-scale flow result in specific 
singularities of the Hamiltonian. Interpreting wave packets as particles with momenta 
equal to their wave vectors moving in a certain force field, one can consider these 
singularities as infinitely deep potential holes acting quite similarly to the ‘black holes’ 
of astrophysics. It is shown that the particles fall for infinitely long time, each into its 
own ‘black hole’. In terms of a particular wave packet this falling implies infinite 
growth with time of the wavenumber and the amplitude, as well as wave motion 
focusing at a certain depth. For internal-wave-field dynamics this provides a robust 
mechanism of a very specific conservative and moreover Hamiltonian irreversibility. 

This phenomenon was previously studied for the simplest model of the flow non- 
uniformity, parallel shear flow (Badulin, Shrira & Tsimring 1985), where the term 
‘trapping’ for it was introduced and the basic features were established. In the present 
paper we study the case of arbitrary flow geometry. Our main conclusion is that 
although the wave dynamics in the general case is incomparably more complicated, the 
phenomenon persists and retains its most fundamental features. Qualitatively new 
features appear as well, namely, the possibility of three-dimensional wave focusing and 
of ‘non-dispersive’ focusing. In terms of the particle analogy, the latter means that a 
certain group of particles fall into the same hole. 

These results indicate a robust tendency of the wave field towards an irreversible 
transformation into small spatial scales, due to the presence of large-scale flows and 
towards considerable wave energy concentration in narrow spatial zones. 

1. Introduction 
The problem of describing interactions between internal waves and large-scale 

oceanic motions, which is crucial in understanding oceanic internal-wave dynamics 
and energetics is still very far from finally being resolved (e.g. Miropolsky 1981 ; Olbers 
1983 ; Levine 1983). The present state of internal-wave theory is characterized by the 
search for the strongest mechanism of interaction, which can lead to considerable 
energy exchange between waves and currents, internal-wave energy transfer into 
distant spectral bands, wave breaking, etc. 
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One such mechanism - the trapping of internal waves which propagate in a guide 
(horizontally varying due to the non-uniformity of stratification and currents) - was 
found by Badulin, Shrira and Tsirnring (Badulin, Tsimring & Shrira 1983; Badulin, 
Shrira, Tsimring 1985, hereafter referred to as BSTl and BST2). The essence of this 
mechanism is as follows. In the fra.mework of linear inviscid theory there are regions 
of ‘ non-transparency ’ for comparatively short (typically with wavelengths less than 
lo3 m) guided internal waves propagating on non-uniform currents. A wave packet 
approaches the boundaries of these: regions of non-transparency asymptotically, i.e. it 
tends to stop in a frame of reference moving with the current and the intrinsic wave 
frequency tends to the maximum frequency of linear internal waves (for example, the 
maximum value over depth of the Brunt-Vaisala frequency in the model of shearless 
basic flow). All this enables us to speak about wave trapping by the current and to refer 
to the boundary of non-transparency (for a given wave) as the wave trapping layer. (In 
fact we have a line of trapping, bul: we preserve the ‘historic’ term.) Hereafter we use 
the term ‘trapping’ in this sense only. It is also often used for waves propagating in a 
certain wave guide - we shall refer to these waves as ‘guided’ or ‘localized’. 

The effectiveness of the wave trapping mechanism and the very fact of its existence 
were demonstrated in BSTl and RST2 for the simplest type of non-uniformity (the 
ambient fields of current velocity U(x,z)  and stratification N(z)  were considered to 
depend on one of the horizontal spatial coordinates only). We list below some of the 
results derived within this model. 1 t was shown that when a wave packet approaches 
the trapping layer, wavenumber and amplitude grow with time while wave motion tends 
to concentrate at a certain depth. Within the bounds of the linear inviscid theory the 
growth of wavenumber and amplitude is unbounded. 

Firstly, this picture of wave trapping was derived in the WKB-approximation of 
linear theory. Exact solutions of the model problem (Erokhin & Sagdeev 1985a, b) 
confirm the main conclusions of the approximate theory, including the validity of the 
WKB-approximation. Some experimental evidence of internal-wave trapping in a 
strong horizontally inhomogeneous current (Lomonosov current) has been reported 
recently (Badulin, Vasilenko & Golenko 1990). It has been found that under certain 
conditions the trapping definitely takes place and produces strong effects like wave 
breaking or, at least, stimulates small-scale turbulence generation at the depth of 
maximal stability, i.e. at the maximum of the Brunt-Vaisala frequency. We note that 
the range of wave and current parameters where the phenomenon has been observed 
in its simplest form is not so typical of ocean conditions as to imply that the trapping 
in this form is a widespread phenomenon. We believe that another formulation of this 
problem is of primary interest: whether the trapping takes place as a general tendency 
of internal-wave-field evolution and how this tendency reveals itself. 

The asymptotic character of the approach of the packet towards the trapping layer 
in this context means that the internal-wave dynamics becomes principally irreversible 
even in the inviscid approximatiorl of linear theory (i.e. within the framework of the 
theory not taking into account, in particular, wave-wave interactions, wave breaking 
processes or the existence of critical layers). 

Let us specify the place of our problem within the vast corpus of recent works, where 
the term ‘irreversibility ’ has been used in the context of internal wave dynamics. 

The first group of works worth mentioning here, initiated by McComas & 
Bretherton (1975), starts with the kinetic equation for the internal-wave field or certain 
analogues of this equation. Irreversibility in these problems comes from certain 
ensemble averaging of wave characteristics as in the kinetic theory of gases. This 
irreversibility is connected with the conservative mechanisms and provides energy 
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exchange among motions of different scales. For the internal waves these mechanisms 
are the resonant wave-wave (McComas & Miiller 1981 ; McComas & Bretherton 1977) 
or wave-current (Watson 1985) interactions. In the latter case, the current is 
represented by a large-scale wave motion assumed to be stochastic. 

Very close to the first group lies the one where both the deterministic and stochastic 
fields are under consideration (Raevsky 1983 ; Bunimovich & Zhmur 1986). The typical 
problem statement is as follows: a wave packet (the deterministic part of the wave field) 
propagates through a stochastic environment. In this case, ‘irreversibility ’ reflects the 
scattering of the deterministic component. 

‘Pure deterministic irreversible’ problems can be considered as those dealing with 
the elementary interactions in an appropriate wave field, that is, as ‘bricks’ of the 
problems mentioned above. Commonly, consideration of these problems involves such 
physical mechanisms as strong nonlinearity (e.g. wave breaking) or wave instability. In 
particular, the inhomogeneity of ocean currents causes transformation of internal 
waves in the small-amplitude approximation, and then significant nonlinear and 
viscous effects become apparent, which in their turn provide ‘classical ’ irreversibility. 

Within the ‘pure deterministic irreversible’ class of problems there is a special group 
concerned with asymptotic-with-time effects, the most well-known of which is the 
critical layer phenomenon (e.g. Booker & Bretherton 1967). The number of review 
works devoted to different aspects of wave dynamics near critical layers is too large to 
be listed. (For the basic references see the book by LeBlond & Mysak 1979.) In view 
of recent results, the critical layer should not be considered to be of prime importance 
for the internal wave field energy balance; earlier overestimations of its role was a 
consequence of the problem idealization (Borovikov 1988). Other types of wave 
asymptotic behaviour due to singularities of different natures, including the ‘trapping 
singularity that we are interested in, have been studied by Basovich & Tsimring (1984) 
and Olbers (1981). In the latter, the relation between critical layer and trapping layer 
phenomena was demonstrated fairly well. The mathematical difference lies in the 
statement of the physical problem. Trapping layers and critical layers can be viewed as 
the two limits of the same problem and their physical models have their own range of 
applicability. However, in both these important works the approximation of constant 
Brunt-Vaisala frequency was essential and inhomogeneity of the mean hydrophysic 
fields was, in fact, one-dimensional. 

However, the physical picture of trapping differs significantly in one-, two- and 
three-dimensional problems. The increase of dimensions changes the mathematical 
nature of the problem significantly and leads to quite different physical consequences. 
In particular, the concentration of wave energy occurs in a plane in the one- 
dimensional problem, in a line in the two-dimensional problem and at one point, 
according to one of possible scenarios, in three-dimension. Thus, it is fundamental to 
an understanding of the phenomenon of trapping to analyse the situations where both 
horizontal and vertical inhomogeneities are important together. 

In this paper we pose the question concerning the structural stability of the effect of 
trapping and the tendency towards irreversible transformation of internal waves to the 
small scales in mean hydrophysic fields of arbitrary geometry. We have some grounds 
to suppose that other effects which will not be considered here do not fundamentally 
change the results of our investigation. For an asymptotical regime of transformation, 
wave-dynamical irreversibility occurs regardless of the way nonlinearity or viscous 
effects are specified. The phenomenon of trapping is a high-frequency one (relating to 
the internal-wave frequency range). That makes the effect, unlike in the critical layer 
case, structurally stable and therefore important. We recall that as the wave frequency 
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near the critical layer tends to zero, the wave dynamics becomes strongly influenced by 
low-frequency variations of the mean current, inertial waves (see e.g. LeBlond & 
Mysak 1979; Broutman 1986; Broutman & Grimshaw 1988), Earth rotation, etc. An 
essential feature of wave trapping is that both the vertical and horizontal wave scales 
tend to zero, while in a critical layer only the vertical scale diminishes, and in problems 
of wave instabilities the spatial scales, as a rule, remain the same or vary slowly. 

While studying general properties of internal-wave dynamics on inhomogeneous 
currents a number of questions. arise in connection with the phenomenon of trapping. 
The first is whether the tendency of the field of guided internal waves to irreversible 
transformation into the small-scale band holds when the waves propagate on 
horizontally and vertically inhomogeneous currents of arbitrary geometry. This 
question can be paraphrased in terms of questions regarding internal-wave trapping in 
an arbitrary inhomogeneous ambient current field. In particular, questions about the 
existence (non-existence) of trapping and relations between the universality of its basic 
features established in BSTl, 13ST2 and the modification of these features. This work 
presents some answers to these questions and is organized as follows. 

In $2 we give the problem formulation. We start with the known set of Hamiltonian 
ray equations which describes the propagation of small-amplitude internal waves in a 
horizontally non-uniform ocean in the WKB-approximation (e.g. Voronovich 1976; 
Miropolsky 198 1). The characteristics of the vertical inhomogeneity (vertical profiles 
of mean stratification and large-scale current) are incorporated into the Taylor- 
Goldstein boundary-value problem. Its solution yields the local dispersion relation, i.e. 
the Hamiltonian of the system. 

Thus, within the accepted WKB-approximation the problem of a complete 
description of the wave-packet dynamics in the non-uniform flow field reduces to 
solving a set of four Hamiltonian equations. This system describes the motion of a 
particle-wave packet (with momentum k) in a certain force field. We stress that the 
structure of this field is determined not only by the dependence of the mean flow on 
horizontal spatial coordinates, but also by kinematic characteristics (wave vector) of 
the internal-wave packet itsell.. The internal-wave dispersion law leads (in terms of the 
particle-wave analogy) to the occurrence of special singularities of the force field 
potential (‘potential holes ’). Some particles ‘fall’ into these holes for aninfinitely long 
time (each ‘type’ of particle falls into its own holes), while the particle momentum also 
grows infinitely. Thus, the trapping layer acts as a specific perfect absorber or, using 
the astrophysical analogy, as a ‘ a  black hole’. Hence, the problem of describing the 
phenomenon of trapping can be formulated as the problem of particle dynamics in the 
hole neighbourhood. We recall that the infinitely long falling of particles into these 
holes is interpreted as the waves undergoing an irreversible transformation to small 
scales. Further we shall study only this specific conservative and, moreover, 
Hamiltonian irreversibility. 

The discussion of the methods and approximations in $2, however, does not touch 
upon the important question:;, which weakly depend on the geometry of the basic flow. 
Namely, in justifying the validity of the WKB-approximation, the calculation of 
dissipative and nonlinear effects was not given. These questions have been discussed in 
detail in BST2 for a plane mean flow. In particular, the validity of the WKB- 
approximation for a proper description of wave trapping was demonstrated (BSTl , 
BST2). Later this fact was also confirmed by analysing the exact solution for the 
corresponding ‘reference’ equation of a linearized problem in the vicinity of the 
singular point (Erokhin & Sagdeev 1985a, b). In these works the importance of 
viscosity and packet bandwidth for the final stage of the packet evolution was shown 
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as well. A quantitative description of these factors can be easily provided for arbitrary 
flow geometry in a similar way. Nevertheless, we confine ourselves to the paradigm of 
the ideal fluid and the quasi-monochromatic wave, aiming to understand and 
demonstrate the basic qualitative features of internal-wave dynamics in an inhomo- 
geneous flow field per se. We try to achieve this goal by studying a chain of 
comparatively simple models. The models are chosen so that, on the one hand, they can 
be analysed in detail, and on the other hand, they are proper ‘bricks’ for the synthesis 
of a consistent view. 

The present paper, which is the first part of the work, is based on an approximation 
which we refer to as the ‘local analysis approximation’. Its essence is an expansion of 
the Hamiltonian (or straightforwardly the flow field) in power series in the horizontal 
coordinates. The analysis based on the leading terms of this expansion can be justified 
for a certain range of spatic+temporal scales and in this sense is ‘local’. The scales of 
validity are not small owing to the small horizontal gradients of the flow and to the 
small group velocity of short internal waves. The questions concerning the quantitative 
evaluation of the validity range and the ‘non-local’ effects, in particular the global 
behaviour of trajectories, are the subjects of the second part of this work (Badulin & 
Shrira 1993). We note that the local analysis approximation simplifies greatly the 
mathematics of the problem. 

Section 3 (the main results of which were briefly reported in Badulin & Shrira 1985) 
is concerned with the model where the basic current is considered to be vertically 
uniform while the basic density stratification is assumed to be horizontally 
homogeneous. The main types of internal-wave dynamics are distinguished and 
quantitatively described. The presence of the flow’s vertical shear drastically 
complicates the packet dynamics in the case of two-dimensional flow non-uniformity . 
Still, in $4 we obtain a quantitative description for a number of important models and 
acquire a qualitative understanding of the general situation. The tendency to 
irreversibility holds for internal-wave conservative dynamics under rather general 
conditions. 

Section 5 presents a brief discussion of the results and directions of further 
investigation. 

2. Formulation of the problem 
2.1. Geometric optics approximation ; basic equations 

We will study internal-wave dynamics on a steady ambient stratified large-scale shear 
flow with given U(U(z, x), V(z, x), 0) and stratification N(z, x); here x is the horizontal 
and z is the vertical coordinate respectively, and N(z, x) is the Brunt-Vaisala frequency. 
The horizontal scale L of the flow variability greatly exceeds the typical vertical scale 
d. We shall consider small-amplitude internal waves with wavelength h much smaller 
than the characteristic horizontal scale L (A 4 L). Under these scale relations we can 
naturally use the ray optics approach (WKB-approximation) for describing the wave 
propagation (Miropolsky 1981 ; Voronovich 1976). Then the wave is supposed to be 
locally plane with local wave vector k and absolute (i.e. measured in a laboratory frame 
of reference) frequency o. At each point on the horizontal plane x the dependence of 
o on k, as well as the vertical mode structure, are found by solving the Taylor-Goldstein 
boundary-value problem 

(o-k-U)2a:zw+[N2JkJ2-(w-k-  U)a:z(w-k.U)-lk12(w-k.U)2]w = 0, (2.1) 

with the standard boundary condition at the sea surface and the bottom. We shall take 
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homogeneous (zero) boundary conditions. The choice of boundary conditions does not 
influence our subsequent analysis and results. Here w(z, x) is the vertical wave-velocity 
component which depends parametrically on the horizontal coordinate x. 

The ray equations 
Xi = aklw; k, = -aa,,w, (2.2) 

give us the wave packet coordinates x and wave vector k as functions of time t.  The 
evolution of the wave vertical velocity w is governed by the equation of conservation 
of wave action I 

[!+V'(aklwI) = 0, (2.3 a)  
where 

+w2[g(w-k.  U ) - 3 + 3 ~ - k -  U ) z ( ~ - k *  U)-z ~ k ~ - ' ] ~ z + o ~ .  (2.3b) 

Here w is not a normalized eigenfunction as is usually supposed in linear homogeneous 
problems, but it is determined by initial conditions at a point xo. We shall use the term 
'internal-wave amplitude ' and notation A for the maximum-over-depth value of the 
wave vertical velocity w. The last term on the right-hand side of (2.3b) describes the 
'direct' influence of the surface boundary conditions. Further, we shall neglect this 
influence by imposing rigid-lid homogeneous conditions at the free surface and the 
bottom, or the condition of decaying w at infinite IzI. 

Thus within the accepted approximations the problem is reduced to that of solving : 
(i) the local Taylor-Goldstein boundary-value problem (2.1) (this gives us the 

(ii) the set of Hamiltonian ray equations (2.2) (this describes the wave kinematics); 
(iii) the transport equation (2 .3~)  which governs the full spatial dependence w(z, x) 

and hence the amplitude A. 
It should be noted that the three-dimensional problem is now (in the WKB- 

approximation) split into two independent parts : deriving the local (at each point 
(x,  y ) )  wave vertical structure via (2.1) and then describing the evolution of the wave 
parameters (determined by w(k,  x )  and I(k, x)) in two spatial dimensions. However, 
even such ' two-dimensionalization ' of the three-dimensional problem does not give 
any hope for its complete analysis in the case of an arbitrary flow, as not only can the 
dispersion law w(k,x) be rather capricious, but the very problem of deriving it from 
(2.1) is not generally solvable. The proper choice of a number of somewhat simplified 
models illuminating the main features of the phenomenon under study and its detailed 
subsequent analysis seems to be the most natural way forward in this situation. We 
start by recalling some results derived within the simplest model in BSTl and BST2. 

2.2. The phenomenon of trapping in the simplest flow geometry 

Hamiltonian o(k, x )  and the vertical structure of w(z, x)); 

Consider the simplest model of horizontally non-uniform stratified mean flow 

N = "z); u= (V(y),O,O). 

Then, splitting into the horizontal and vertical problems becomes almost complete. In 
the Doppler relation 

w ( d k , x ) - k * U =  Q(k) (2.4) 

(w is the frequency in a laboratory system, Q is the intrinsic wave frequency in the 
reference frame moving with the ambient flow) Q(k) can be found from boundary- 
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value problem (2.1) with U = 0, that is Q(k) is a function with well-known properties 
and is independent of x. Let us consider internal-wave kinematics near the point yt,, 
specified as follows 

where N,,, is the maximum-over-depth value of N(z) and k, is the x-wave-vector 
component. As a packet approaches ytr, G! tends to N,, and, according to the known 
asymptotics of SZ(k), the wavenumber tends to infinity and the y-component of the 
group velocity decreases so rapidly that it takes an infinite time for the packet to reach 
y = ytr, i.e. the packet approaches this point asymptotically. This is easily seen from the 
expression for time ~ ~ ( 7 ~  is the time for the packet with initial wave vector k(k,, 1,) to 
acquire the value k(k,,l)), which is calculated straightforwardly if we put U,  to be 
constant : 

According to the known properties of the boundary-value problem, the wavenumber 
growth causes a transformation of the vertical mode structure: as lkl grows, the wave 
motion tends to concentrate at the depth z ,  corresponding to the maximum value of 
the Briint-Vaisala frequency N,,, (see figure 1). We refer to this transformation as 
vertical focusing and z ,  as the depth of localization. We also use the term the trapping 
layer for the vertical plane y = ytr, where the intrinsic group velocity of the packet 
asymptotically tends to zero. The slowing down of the packet near the trapping layer 
and zero reflection leads to spatietemporal focusing. All the energy of a mono- 
chromatic wave is focused in the immediate vicinity of ytr at the depth z,. These two 
factors (spatio-temporal and vertical focusing) cause the infinite growth of wave 
amplitude near the trapping layer. We stress that this infinite growth is not an artifact 
of our use of the WKB-approximations, which remains valid here up to the singularity 
(BSTl ; BST2). These results were also confirmed later within the framework of exact 
linear theory (Erokhin & Sagdeev 1985a, b). 

2.3. Internal waves on a flow with arbitrary non-uniformities : preliminary remarks 
The simplicity of the analysis in the previous subsection has mainly been based on the 
possibility of the easy natural separation of the two wave transformation mechanisms 
mentioned above, namely, the mechanisms connected with the evolution of the wave 
kinematic characteristics ('horizontal ' factors of transformation) and the factors of the 
mode structure transformation ('vertical ' factors). Commonly, these two classes of 
mechanism are intricately interrelated and, evidently, an analysis similar to that of the 
previous subsection is impossible. However, the concepts introduced on this basis (the 
trapping layer, vertical and spatietemporal focusing, the depth of localization) prove 
to be very useful tools for the general case as well. 

Some features of internal-wave dynamics in the general case can be more easily 
understood via the following trick. Let us introduce the effective Brunt-Vaisala 
frequency N,,, 

(2.6) 
N2(z ) (u -  k* U(z0, x) )~  (o-k. U ( Z ' , X ) ) ~ ( ~ *  U(Z, x ) ) ~ ~  

(w-  k. U(Z, x)) lk12 
+ Xff = (w - k - U(z, x))2 

The idea of this trick is an attempt to reduce the problem formally to the case of a 
vertically uniform current. Let us take a certain arbitrary depth zo and define the wave 
frequency a,,, in the reference frame moving with the flow at this depth as follows: 

(2.7) 52,ff = w - k - U(z0, x). 

2-2 
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FIGURE 1. The trajectories of a packet trapped by the flow inhomogeneity of the current U = 
U,(O)yi and the vertical focusing of a wave trapped by inhomogeneity of the current. (a) The current 
profile. (b) The trajectories of four packets of the same (modulus) initial (at y = 0) frequency and 
wave vector k projections (k , f ) .  The solid line corresponds to one of the two identical cases 
(antisymmetric curves) when k-a,(U)l,-, is negative. The unlimited monotonic increase of I (while k 
remains constant) and decrease of C,, (the y-component of the group velocity C,) is demonstrated 
by showing k and C at three points (numbered 1,2,3) of the trajectory. Near the trapping layer C,, 
tends to zero; the difference (C,,- U ( y  = ytr)) also tends to zero. Two of the dashed trajectories 
correspond to packets with positive initial values of ka,(U). Before the same process of trapping 
begins these packets should first pass over the simple reflection point (where C,, and 1 change signs). 
(c) The profiles of N(z)  (solid lines) and of the first-mode eigenfunction w(z) (dot-dashed lines) 
corresponding to the points 1,2,3 of the trapped packet trajectory are plotted. The dashed lines mark 
the value of the intrinsic packet frequency R(k). 
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In contrast to the Doppler relation (2.4), here Qef, explicitly depends not only on k but 
also on the horizontal coordinates. Thus, the question of the possibility of the existence 
of the effect of trapping can be formulated as a question about the way the effective 
frequency Q,,, approaches or does not approach N,,,. Fortunately, to answer these 
questions it is enough to know only the short-wave asymptote of Q,,, and N,,,. The 
general tool for further study will be the concept of the effective depth of localization 
z,(k) defined as the depth where N,,, reaches a maximum for the given k .  

2.4. Local analysis of internal-wave dynamics 
Short internal waves are localized near the depth of localization z,(N(z,) = N,,,, ,). 
We shall derive the short-wave asymptotics of the boundary value problem (2.1) 
following a slightly generalized procedure of BSTl and BST2. Expanding the 
effective Brunt-Vaisala frequency Net, near z ,  in powers of ( Z - Z ~ ) ,  we get the 
boundary-value problem for the Weber equation 

with boundary conditions at infinity 
w,, + {n(zm(k, X, w) ,  k ,  X, w )  + nZz(z,(k, X, w),  k ,  X, w )  [gz-z,)']} w = 0, 

w + o ;  IzI+ao. 

(2.8) 

Here 

The eigenfunctions w,,(z) of (2.8) corresponding to a discrete spectrum are Hermite 
polynomials (Abramovitz & Stegun 1964) 

The dispersion relation w(k, x) is found from the equation 
w(z, k ,  x) = exp { - 3 - ~l7,,)~ (z - Z , , , ) ~ }  Ha{ (-~Z7,,)~ (z - z,)}. (2.10) 

(2.1 1) n(z,(k,  X, w), k,  X, 0) [ - Z7,,(zm(k, X, w), k ,  X, w)]-i = (2n+ 1)/2/2. 

Using (2.10) and (2.3 b) we straightforwardly get the expression for wave action Z (for 
details see BST2) 

Z x r+ N2w2(w - k .  U)-3 dz x N2(z,) AZd(z,) (w - k. U(Z,))-~ @(n). (2.12) 

Here we suppose V,, to be small and hence the second term on the right-hand side of 
(2.3b) may be neglected. The third and the fourth terms in (2.3b) are zero when 
boundary conditions at infinity are used. In (2.12) 

d(z,) = [ -fI7,,(zm(k, x, w),  k ,  x, w)]-'(2n + l)-' 
is the characteristic vertical scale of mode wn(z), while @(n) is a universal function of 
mode number n. 

It should be stressed that all the main parameters of short internal waves are thus 
expressed via (2.9H2.12) through the local characteristics of a large-scale flow only. 
Hence the mechanisms of the short internal-wave transformation to be studied are 
immediately related to the local spatial structure of the ambient flow (contrary to the 
case of waves of larger scales), rather than to the integral characteristics of the flow. 

Throughout the paper we shall exploit the first-order expansion in the horizontal 
coordinates of the basic flow 

I N(z, x) = N,(z) + N, x + N ,  y ,  
U(Z, x) = U&Z) + V, x + V, y ,  

(2.13) 
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or the Hamiltonian o(k, x) expansion directly. We refer to this first-order expansion as 
the local analysis approximation. Generally, this approximation has a finite temporal 
interval of validity. The quantitative evaluation of the validity range and 'non-local' 
effects in wave dynamics will be given in the second part of this work. Here we only 
note that some 'local' scenarios of trapping can be found within this approximation 
for which validity of an expansion of the type (2.13) for arbitrary times can be easily 
confirmed a posteriori. 

3. Wave dynamics in a vertically homogeneous velocity field 
3.1. Internal-wave kinematics 

It has already been mentioned @2.3) that, in the case of vertically homogeneous flow, 
the problem of finding the dependence Q(k,x)  reduces to the analysis of the well- 
known boundary-value problein for internal waves in a horizontally homogeneous 
stationary ocean. This allows us to make no preliminary assumptions about the 
dependence N(z). But for the field U(x) we shall use the local (in the vicinity of some 
point x, = 0) representation (2.13) 

u=  u,+u,,x+u,y, v =  v,+V,x+v,y. (3.1) 

Rotation of the coordinate system through the angle q5 = 2 tan-' [2Uz( U, + V,)-'] 
reduces (3.1) to the form 

Here U, and V ,  differ from their values in (3.1); however, we shall use the same 
notation. For the flow (3.2) a streamline function can be introduced: 

(3.3) 

The streamlines Y = const are the second-order curves (conic sections) and their 

Y = +U,( y + u,/ V,)' - ; V,(X + v,/ V,)? 

type is determined by the sign of A2:  

A2 = V .  U,. (3.4) 

(In terms of the original variables A2 = U, 5- Vi) .  
The remarkable feature of the velocity field approximation considered here is that 

the system of ray equations splits into two sets of equations that could be solved 
successively and thus becomes completely integrable. As far as we know, Jones (1969) 
was the first to notice and exploit this fact. We also mention that approximations of 
the type (3.2) reveal some remarkable properties which are relevant to nonlinear waves 
as well and have become the subject of intense studies (Craik 1989; Craik & Criminale 
1986). 

For the wave vector components we have 

k = - V.1; I = -U,k. (3.5) 

We stress that the type of wave evolution (the form of solution of (3.5)) is determined 
by the sign of A2 only, i.e. by the flow geometry exclusively: 

(3.6) 
c) = -( 1 k, - V ,  1,I.A )exp(At)+-( 1 k, + V,  l o p  )exp(-At). 

2 I -  U, k0ld4 2 l+U,k,/A 

Consider the behaviour of solutions (3.6) and streamlines !P = const determined by 
the sign of A'. 
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(a) A’ = 0 (‘parabolic’ point). The velocity is parallel to one of the horizontal 
coordinate axes. The streamlines are straight. We have considered this case briefly in 
$2.2 and it has been analysed earlier in detail in BSTl and BST2 and Erokhin & 
Sagdeev (1985). See also figure 1. 

(b) d2 > 0 (‘hyperbolic’ point, see figure 2a). The streamlines (3.3) are hyperbolas 
and curves on the plane (k,l) given by (3.6) are also hyperbolas. The asymptotes of 
hyperbolas Y = const and (3.6) are pairwise orthogonal. It is easy to understand the 
behaviour of wave-packet trajectories in this case. 

We first make a qualitative analysis. Since in the model under consideration the 
internal-wave intrinsic frequency cannot exceed the maximal value of the Brunt- 
Vaisala frequency, the Doppler shift (scalar product (k. U)) cannot increase 
infinitely as Ikl grows infinitely. Therefore, the angle x = cos-’ [(k. U ) / J ( k .  U)l] must 
tend to in. Thus, the internal-wave-packet motion in phase space at large times is 
constituted by the motion of vector k along the appropriate branch of a hyperbola on 
the plane (k, l )  which is accompanied by ‘gluing’ of the wave-packet trajectory in the 
plane (x,y) to a certain streamline. This ‘gluing’ is caused by peculiarities of the 
internal-wave dispersion law: namely, the limited value of internal wave intrinsic 
frequency and, hence, the rapid decrease of intrinsic group velocity with the growth of 
wavenumber. 

As will be shown below, the behaviour of the wave-packet trajectories is qualitatively 
different for waves of other types with unlimited intrinsic frequencies (surface waves, 
for example). In this case the trajectories are not glued to the streamlines of the mean 
flow. The possibility of a concentration of trajectories in the vicinity of a certain curve 
at large times could lead to infinite growth of wave amplitude. 

(c) A2 < 0 (‘elliptic’ point, figure 2b). The streamlines are ellipses. The wave vector 
on the plane (k,l) also moves along an elliptic curve oriented at a right angle to the 
ellipse Y = const on the coordinate plane. In this case there is no tendency to infinite 
growth of the wavenumber but still a significant wave transformation is possible. 
Indeed, the ratio of the maximum to the minimum wavenumber is determined by the 
ratio of velocity shears R = I V,/U,)i. The large increase of the wavenumber for large 
values of R, as well as in case (b), provides conditions for the manifestation of 
mechanisms of dissipation and nonlinear interaction which are not considered here. 
This will lead to a ‘practically irreversible ’ type of wave-packet evolution. 

3.2. Internal-wave dynamics 
Qualitative speculations on the behaviour of the wave-packet trajectories and the 
possibility of significant growth of wave amplitude can be supported by the exact 
solutions of the system (2.2H2.3). 

It is convenient to consider the problem in terms of new variables 

c,,, = Rx+y; 5 2  = # /R+ l ) .  (3.7) 
Indices 1,2 correspond to the upper and lower signs respectively. Then the solutions 
to the system of ray equations take the form 

K1, 2 = K:, 2 exp (T (3.8~) 

f , 2  = $2exp(+A0+exp(fA0 exp(TAOaQ/aK,,,dt. (3.86) 

When dz > 0 the axis of the new coordinate frame coincides with the asymptotes of 
hyperbolic streamlines while K ~ ,  K~ represent components of the ‘new’ wave vector in 
this system. Thus, the basis for choosing the new variables becomes clear: we consider 

c 
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FIGURE 2. Wave-vector evolution depending on the mean current geometry in the ' totally-local' flow 
field. (a) Hyperbolic streamlines : infinite growth of wavenumber independent of the initial wave 
parameters (initial wavenumbers and coordinates) and wave type (wave dispersion relation) is 
depicted in the right-hand sketch. The internal-wave-packet trajectory tends to the streamline 
(depicted on the left-hand sketch) since the wave group velocity rapidly decreases. While the short- 
wave packet propagates along the streamline, the wave vector goes along the hyperbola branch which 
is perpendicular to this streamline. (b) 'Elliptical streamlines : the wave-vector trajectory is an ellipse 
(right) and the wave evolution is reversible in k-space (within the framework of linear, nonviscous 
theory) irrespective of the wave type and wave parameters. (c) Evolution of internal-wave amplitude 
(right) and wavenumber (left), depending on the mean current geometry (sign of A 2 ) :  Ap c 0 is the 
region of reversibility where wave vector and wave amplitude are finite; d2 > 0 is the irreversibility 
region where wave vector and amplitude grow infinitely with time. 
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the motion of a wave packet with reference to the asymptotes of hyperbolic streamlines 
in order to describe properly the effect of the ‘gluing’ of trajectories to these 
streamlines. 

According to (3.8a) the wavenumber increases exponentially as t + 00. The wave 
front tends to become parallel to asymptotes of hyperbolic streamlines. We note that 
this type of wave-vector behaviour does not depend on the nature (in this context, on 
the dispersion relation) of waves propagating upon the shear flow given by (3.1). On 
the contrary, the form of the dependence c,, 2 ( ~ )  results from the specific features of the 
wave dispersion law, or, to be more precise, it is described by the behaviour of the 
integral term on the right-hand side of (3.8b), when t +  00. The first term on the right- 
hand side of (3.8b) describes the wave-packet motion together with the mean flow. 
Evidently, the behaviour of the second term responds to the intrinsic packet motion 
relative to the mean flow and allows one to distinguish between two principal possible 
kinematic regimes for the waves depending on whether the intrinsic group velocity 
aQ/aK decreases rapidly enough when lkl+00 or not. If not, the term under 
consideration increases infinitely as, for example, in the case of surface gravity waves. 
The behaviour of trajectories of internal waves is quite different: the term in (3.8 6 )  
describing the intrinsic packet motion has a finite limit when t +  co (lkl+ 00). The 
packet covers a finite distance relative to the water mass in which it was originally 
placed. Short-wave transformation of internal waves in the problem concerned turned 
out to be local in the coordinate frame that moves with the flow. Thus we can refer to 
the ‘gluing’ of trajectories of internal waves to the mean flow streamlines. 

It is natural to investigate the relations between internal-wave dynamics and the 
specific features of wave kinematics mentioned above. From (2.3a) we obtain the law 
of conservation of wave action Z for a stationary case in the form 

where 6 is a parameter of a family of trajectories. Usually E is chosen as xo(yo). 
Neglecting the intrinsic packet motion relative to the mean flow we obtain Z = const. 
The increase of packet dimensions along 1, is compensated by its decrease along c2. 
Conservation of the packet volume on the (x,y)-plane can be associated with non- 
divergence of the mean flow. 

Thus, the variation of I is due to the intrinsic packet motion relative to the mean 
flow. From (2.9) in our case we obtain 

Here 

(3.10) 

(indices 1 , 2 correspond to the upper and lower signs, respectively), and the parameter 
is taken in such a way that the equation 

w w c  -X(W + XwE(C -XPN = 1 
is satisfied. In these terms the equation of caustics Z,/Z = 0 can be rewritten in the form 

(c -X(N (G -.m) = 9 ( 3 . 1 1 ~ )  

or in terms of the current packet coordinates cl,z(t),  

(ClO) -fm (f(0 -fe(f)) = Ml Y (3.1 1 b)  
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FIGURE 3. Internal-wave-packet trajectories in the case of the irreversible evolution (A’ > 0). 
‘Unnatural ’ caustics are formed when time increases infinitely. Trajectories tend to the caustic line 
asymptotically. Trajectories which started from a hyperbola (solid line) ‘glue’ themselves 
asymptotically to the same hyperbola (with the same focal parameter) transferred parallelly (dashed 
hyperbola). The location of the ‘initial’ hyperbola determines the parallel shift of the caustic line 
(mean current streamline) as 5, =h(co): 5, =f2(co) .  

wheref,, = l/d 852/8q, and the constant M is determined by the initial parameters 
of the wave packet. 

Using the system (3.1 1 a, b) the: behaviour of the caustic surfaces can easily be 
analysed. Let the wave vector KO = (K!, $) be fixed and let us assign a certain value to 
t .  Thereby, as is seen from (3.1 1 b), we wl1 determine the centres of hyperbolas (3.1 1 a, 
b). Let the wave packet be located at the point c* = (c,c). Having specified the 
constant M as 

we prescribe a certain spatial cross-section of the ray tube. Rays with the initial wave 
vector KO, originating from this cross-section, will be focused at moment t on the 
hyperbola determined by (3.1 16). Varying the constant M, we can represent the whole 
wave packet in the form of the superposition of its cross-sections by hyperbolas (3.11 a)  
at the initial moment, as well as by superposition of caustic surfaces at an arbitrary 
subsequent moment t .  

Plotting the curves in the way Jhown in figure 3 is adequate for the case of an 
ordinary caustic and provides a qualitative explanation of the wave amplitude 
limitation in the vicinity of an ordinary caustic: spatial ‘smearing’ of the initial 
conditions (or finite packet spectrum width) results in the spreading of the caustic 
surface. 

In the present problem the formation of caustics of quite another type occurs when 
t + 00 owing to the aforementioned peculiarity of the internal-wave dispersion relation. 
For internal waves, as can easily be seen from (3.1 1 a, b), such caustics exist and are 
associated with the mechanism of ‘ghing’ of trajectories to the streamlines. In this case 
for caustic surfaces we have 

(3.12) 
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The family of hyperbolas (3.12) is one-parametric, contrary to the multi-parametric 
family (3.1 1 a, b) in the case of ordinary caustics. This means that the explanation of 
the mechanism of wave-packet amplitude limitation for ordinary caustics given above 
cannot be applied in the literal sense to the case of caustics formed when t + 00. 

Making use of (3.3), (3.12) it is not difficult to obtain the asymptotic (when t -+ m) 
laws of growth of the wave amplitude A:  

A - exp(:At). (3.13) 

In the case of closed streamlines (the ‘elliptic’ case) the dynamics of internal-wave 
packets can be considered in a manner quite similar to the case of A ’ >  0. The 
fundamental difference between them lies in the fact that only ordinary caustics are 
possible when A’ < 0 and the finite value o f t  corresponds to them through the system 
of equations (3.11 a, b). The qualitative behaviour of the wave amplitude and 
wavenumber is depicted on figure 2(c). 

Note that while the evolution of the packet wave vector is of periodic character, the 
trajectory on the coordinate plane is aperiodic and has the form of an intricate spiral. 
When t --f m the packet tends to infinity in x-space. Thus, the local analysis of the 
elliptic case remains valid only for a limited time interval. 

3.3. Degenerate case of internal-wave dynamics in a vertically homogeneous 
velocity jield 

Within the framework of the model considered here we studied the specific features of 
internal-wave dynamics. First, we have to pay attention to the structural stability of the 
effect of ‘gluing’. This structural stability, of course, can disappear in less idealized 
models. However, the opposite happens to be true: the structurally unstable regime of 
motion in the model presented here could correspond to a robust physical mechanisms 
of wave transformation. 

+ 0, when 
A’ > 0. These initial conditions determine the motion along the separatrix of the saddle 
generated by the streamlines of the mean flow. In this case the wavenumber also grows 
infinitely and the internal-wave packet asymptotically approaches the saddle point 
located at the coordinate origin (see figure 4 and its caption). This phenomenon proved 
to be similar to that of ‘trapping’. Note, however, that in the case considered here the 
asymptotic approach of the packet to the coordinate origin can occur not only for 
internal waves, but also for surface gravity waves (see (3.8 b)) (the group velocity 
should decrease with the wavenumber growth). 

A remarkable new feature should be pointed out: all harmonics asymptotically 
approach the saddle point, i.e. all spectral components of wave packets focus at one 
point, and, therefore, dispersive spreading is not able to weaken possible strong 
dynamic effects which result from the packet trapping. We shall refer to such a 
phenomenon as non-dispersive focusing. The asymptote for internal-wave amplitude 
similar to (3.13) can easily be found : 

A - exp (:At). (3.14) 

If we give up our assumption that the basic flow has zero divergence, then the 
structurally unstable situation in the model represented here becomes of true physical 
interest. In the real ocean there often exist weak vertical motions that lead to 
divergence of the horizontal velocity field. The simplest model of such flow is the 
longitudinally non-uniform flow U = U,xi, that corresponds exactly to the case just 
considered of motion along the separatnx. 

Consider trajectories with initial conditions K! = 0, K: 9 0, 6 = 0, 
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k 
FIGURE 4. The ‘longitudinal’ trapping of waves on the mean current. The wave with initial intrinsic 
frequency D = w (when U = 0) propagates against the mean horizontally inhomogeneous current, 
varying its kinematic parameters according to the formula: w = Q+kU = const. Points A, B give its 
parameters at the intersection of functions D = Q(k) and w -kU (the Doppler-shifted frequency). 
Before the junction point of these two solutions the wave parameters are determined by the point A. 
Then point B gives the wave evolution. The sign of the group velocity changes and the wave travels 
to the point U = 0. As wavenumber grows, infinitely, group velocity tends to zero, and it takes an 
infinitely long time for the packet to reach the point where U = 0. 

3.4. Conclusions 
In discussing the results of this section we would like to dwell upon some points which 
are important for subsequent analysis. 

Applying the local analysis approximation to internal-wave dynamics we have 
distinguished and described two basic types of wave-packet evolution on horizontally 
non-homogeneous flows : 

(i) irreversible inviscid transformation of internal waves into the region of small 
horizontal and vertical scales (models a,  b of $3.1 - A2 > 0); 

(ii) reversible transformation, i.e. with quasi-periodic time variation of packet 
kinematic parameters (A2  < 0). 

A specific type of evolution in our models is determined by the mean flow field 
structure only (namely, by the sign of A2). What is the physical meaning of this 
relation? Using the geometric optics approximation accepted here it is natural to 
consider the internal-wave propagation as the motion of packet particles in a certain 
force field. The motion of such particles is determined by the force-field structure and 
particle inertia. Depending on the relationship between these factors, i.e. the properties 
of the particles and the force field, effective acceleration of the particle (growth of 
wavenumber momentum) may or may not take place. The specific features of an 
internal-wave-packet particle is that its ‘ acceleration ’ (trapping), as was found in this 
section, takes place under rather general conditions and we stress that it does not 
depend on particle characteristics. 

We emphasize one more important feature of internal-wave particles. At large values 
of the wavenumber, internal waves have so little ‘inertia’ that the ‘gluing’ of packet 
trajectories to the streamlines of the mean flow becomes possible. The ‘gluing’, as far 
as the internal waves are concerned, is particularly interesting in connection with the 
possible manifestation of strong dynamic effects, investigation of which is beyond the 
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scope of this paper. We stress also that the 'gluing' is an important qualitative concept 
that will be used for the further analysis of more complicated situations. 

We also note that the exponential temporal growth of the amplitude of the trapped 
waves does not mean instability of these disturbances of the ambient flow in the 
commonly accepted sense of the term (i.e. as an unlimited growth of the energy of 
disturbances). In our case the energy of the packet continues to be finite during the 
course of evolution, the unlimited growth of the amplitude being caused mainly by 
wave energy transfer into another spectral range. 

4. Internal waves in three-dimensionally non-uniform shear flows 
4.1. Formulation of the problem 

To understand when and how trapping occurs in three-dimensional flows in generic 
situations one should analyse the properties of a dynamical system generated by the 
four ordinary equations (2.2) with an implicitly given Hamiltonian (via (2.1)). The 
complete answer requires knowledge of all the trajectories for given arbitrary flow. 
This task lies far beyond the capabilities of modern theory of dynamical systems. Even 
if it were possible, the subsequent problem of separating the different mechanisms 
contributing to this picture would also be a formidable problem. The accepted 
approximations ('local analysis ' and short-wave approximations) which are, in fact, 
expansions in 1kJ-l and x, although they simplify the problem greatly, still do not 
provide a general solution in generic situations. 

We confine ourselves to considering a model flow with the form 

u = yF,(z), v = x q z ) ,  N = N(z)  (4.1) 
( & , F , ,  N are arbitrary functions of depth z). (The model (3.1) of $3 is a particular case 
of the model (4. l).) This flow satisfies the Euler equations for a non-rotating ideal fluid 
and allows a wide class of flow variations within the model. The first-priority questions 
are : to identify the basic physical mechanisms governing internal-wave propagation in 
flow (4. I), and to clarify the role of the vertical structure of the current specified by the 
functions 4, 4 and the stratification profile given by N(z). 

Consider a short-wave equation of the internal-wave dispersion relation (Borovikov 
& Levchenko 1987). 

(4-2) w = min A max "(2) + k .  U(z)] + O(lk1-p) 

where p is a positive value which will be specified below for particular models. As it was 
pointed out in $2.3 short-wave evolution is determined predominantly by the local 
hydrodynamic field structure at a certain depth z,, which corresponds, according to 
(4.2), to the extremum of the expression in square brackets. Depending on the type of 
stratification, three different situations occur: z ,  is determined mainly by the density 
stratification N ( z ) ;  z, is determined by the current profile U(z); z, depends on both 
factors. 

We note also that z ,  depends upon U(z) only in the combination (k- U). Thus z ,  
also depends on the wave parameters, via (k. U). In the previous section we dealt with 
an example of a situation with z, being fixed, (i.e. z ,  did not depend upon the wave 
parameters). Besides the case of $3, where z ,  corresponds to the maximum of N(z),  
from (4.2) one can easily see other examples of this kind, e.g. zm. corresponding to the 
ocean surface or the bottom. To describe wave kinematics in the cases with z ,  
independent of k, one can repeat all the results of $3, inserting U(zm) into all 
expressions in place of U. 
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Here we shall concentrate our attention on another class of situations, namely those 
where z, strongly depends on k and the wave dynamics is therefore much more 
complicated. Distinguishing the influence of stratification and of shear upon z, as 
different mechanisms governing the wave-guide parameters, one should bear in mind 
that the prevalence of one or oth.er mechanism is determined either by the specifics of 
the vertical structure of the ,given flow, or by the wavenumber range under 
consideration. By varying the flow structure and the wave scales within the bounds of 
the model (4.1) we shall elucidate the basic features of guided internal-wave dynamics 
in shear flows. 

4.2. The general properties of the model (4.1) 
The main advantage of the model flow (4.1) is the additional symmetries in the ray 
equations (2.2) in the short-wave limit, which greatly simplifies the study. In particular, 
the depth of localization z, (given by (4.2)) appears to be a function of the two new 
independent variables a (a = ky) and b (b = lx) only. Thus, the short-wave expansion 
of the Hamiltonian takes the form 

w = w,(a, b) + o( 1). ( 4 . 3 ~ )  

In the general case, z, and wo are functions of four arguments : x, y, k, 1. This symmetry 
also yields an additional first integral of motion S 

S = kx+ly. (4.3 b) 

It should be stressed that the specific form of S does not depend on the functions 4, 
F, and N (within the model (4.1)). This remarkable fact enables us to find general 
properties of the wave dynamics within this model. 

Taking S and one of the variables a or b as new canonical momenta we can perform 
a canonical transformation. In Appendix A we give four basic types of this 
transformation. In terms of these new variables new canonical momenta Q, (here the 
indice is the number of the type of transformation in (A 1)) are cyclic. One can also 
exploit this fact and decrease the: number of conjugated variables down to a single pair. 
Still, we prefer to use the variables of the type (A l), which do not depend on the 
specifics of 4, F, or N. 

In terms of these new variables the set of ray equations in the short-wave limit takes 
the form (see Appendix A) si = 0, Q, = hops i ,  (4 .4~)  

k, = -aw0/aQ,, R, = aw,/aR,. (4.4 b) 

We have neglected here the intrinsic wave motion, but the wave kinematics are not 
trivial here because of the dependence of the depth of localization z, on the wave 
vector. Thus in the short-wave limit we have reduced the fourth-order system to a 
second-order one. Moreover, the zeroth-order Hamiltonian wo(a, b) is the first integral 
of the system (4.4) with parametric dependence on S, and our model can be analysed 
in detail. There are two qualitatively different regimes in the cases of closed/unclosed 
curves wo = const on the (a,b)-plane. Closed curves wo = const correspond to time- 
periodic motion (in terms of a and b, and hence, in terms of Q, R, defined by (A 1)). 

The general solution of the ray equation can easily be found in terms of the original 
variables, using the new variables (A 1) as follows: 

k = k,exp(-rA,dt), r O  x = x,exp([d,dt), (4.5 a) 

(4.56) 
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where A ,  = &J,(E,, R,, S,)/aSi. For the periodic motion in (a, b)  there is a periodicity of 
the integrals in the exponents in (4 .5a)  and (4 .5b):  

l+T A ,  dt = A ,  dt = A ,  dt = [+T A ,  dt. (4-6) 

Here t is an arbitrary moment of time and T is the period of the motion in the (a, b)- 
plane. Note that solutions (4.5a, b)  look like solutions (3.6) for shearless flow but 
integrals over period T in (4.6) are evidently not zero and hence strictly periodic 
motions in the model under consideration are not structurally stable. 

One can draw some qualitative conclusions using the notion that flow streamlines in 
each horizontal cross-section are the second-order curves, together with the result of 
the previous section. We recall that the canonical variables Qi are tangents of the angles 
between the wave (or radius) vector and one of the coordinate axes. Thus periodic 
variation of a and b leads to a periodic variation of Qi as well. This means that a certain 
fixed range of angles is passed by a packet in the same time interval. 

Let the packet motion be determined by the flow at two fixed depths z* and z**. 
Within the angular intervals (0, q5) and (x, x + q5) the packet moves at the z* depth and 
within the angular intervals ($, x), (x + $, 2n) at the z** depth. Let the flow streamlines 
at z* and z** be, for example, ellipses with different parameters. The packet evolves in 
accordance with (4.9, where instead of U and N ,  their values at z* (or z**) are taken. 
In contrast to the case of the previous section, the wavenumber does not evolve 
periodically, but grows (or decreases) with every cycle. The wavenumber growth 
(decrease) with time averaged over the cycles is exponential. The packet trajectories are 
composed of the flow streamlines at z* and z** (see figure 5a). One can easily show that 
helixes of these trajectories will twist (untwist) exponentially as well. These conclusions 
also hold qualitatively when the next-order terms in the Hamiltonian are taken into 
account. Owing to the intrinsic packet motion, drift that is linear with time adds to the 
zeroth-order motion along the streamlines. 

The physical interpretation of the relations (4.6) given above can also be applied to 
cases with more than two depths of localization z, and where the flow streamlines are 
not necessarily closed. Figure 5(b)  and 6 illustrate this case. 

Thus the principal difference between the simplest model of previous section and the 
model under consideration lies in the effect of variation of the depth of localization z,. 

Before turning to the study of concrete models we would like to fix some general 
properties of the wave dynamics. 

First, we stress again the principal role of the z,(k)-dependence in the packet 
evolution. In shearless flows the type of wave evolution is determined for all the packets 
exclusively by the sign of the universal value A 2 ,  which is prescribed by the mean flow’s 
horizontal gradients and does not depend on the stratification’s vertical structure N(z) .  
In shear flows an analogue to A’ also occurs, namely A:rf. This is the same combination 
of the flow’s horizontal gradients, but taken at different levels z,. In its turn z, is a 
function of k and of the vertical structure U and N .  Thus, the type of packet evolution 
in the shear flows is determined not only by the flow’s horizontal gradients but by the 
flow’s vertical structure and by the initial wave vector and position of the packet. 

Second, we note that periodic regimes in shearless flows turn out to be structurally 
unstable, when the presence of the shear is taken into account. 
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FIGURE 5. Short internal-wave kinematics in the two-depths-of-localization model. Streamlines 
(dashed-lines) are (a) elliptical over the two depths or (b) elliptical at depth I1 and hyperbolic at the 
depth I. Short internal waves propagate dong the streamline of the first depth in the sectors I and 
along the streamline of the second depth in the sectors I1 (its trajectory is the solid line). For the wave 
packet to come back to the same streamline it started from, a certain relation between the parameters 
of these ellipses (or ellipse and hyperbola) of regions I and I1 should be strictly satisfied. This does 
not occur in the general situation when the wave trajectories (in the x-plane or in the &-plane) are not 
closed and the wave-packet parameters grow (decrease) parametricallly. For the model discussed, 
sectors I and I1 are fixed for the different wave vectors. Thus, the type of wave evolution (reversible 
or irreversible) is determined by the current geometry only. In the irreversible case when wavenumber 
grows infinitely, the wave packet tends to the point x = 0, y = 0. Then the local approximation is 
adequate for this model. 

4.3. Internal waves in the ocean with prevailing vertical non-uniformity of density 
stratijcation 

In the previous subsection we found out some general properties of the model (4.1) and 
showed how to interpret them on the basis of concepts derived in $ 3  for shearless flows. 
We proceed now to study concrete models to distinguish characteristic regimes of 
short-wave transformation in certain ‘basic’ types of flow vertical structure. 

We start with the problem which seems to be a natural continuation and extension 
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FIGURE 6. Examples of short internal-wave trajectories (in the x- and &-planes) described by the 
model (4.1). The trajectories may (u) fill sectors in the x- and &-planes, or (b) propagate throughout 
the whole angle range. Since the localization depth depends on the wave parameters (wave-vector and 
wave-packet coordinates) these sectors and the type of wave evolution are not solely determined by 
the mean-current field geometry. The trajectories in this model twist or untwist exponentially. 

of the model of shearless flow (3.1). According to (4.2) the wave guide in the short-wave 
limit is determined by the velocity shear structure. On the other hand, the vertical non- 
uniformity of stratification usually dominates in the real ocean. That is why the 
question about 'transient' regimes (from one dominating factor to another) is of 
interest. 

4.3.1. Wave kinematics in the model with constant vertical shear 
Consider a particular case of (4.1) : 

u = Ay(1 +cL(z-ZJ), v = Bx(1 +/?(z-ZJ), N 2  = Nt(1 -+-y"*). (4.7) 

The constants a, /? and y in (4.7) prescribe inverse vertical scales of the flow variability. 
In this case a wave guide exists owing to the presence of the maximum N(z). The 
presence of mean shear only shifts its position. That is why we refer to the flow (4.7) 
as an example of a model with the role of density stratification prevailing. 
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It is easy to obtain all the kinematic parameters in the short-wave approximation 
using the results of the previous discussion (see Appendix B). The expression for z, 
demonstrates the main qualitative features of all shear flows mentioned above : 
dependence of the depth of localization on wave parameters. In the short-wave limit 

The sign of zg is determined by the initial wave parameters, namely by the sign of the 
first integral of motion S. The leading term of the Hamiltonian wo depends on S in a 
similar way. This is also true for the next-order term of the Hamiltonian, wl. Thus we 
can illustrate the properties of the system (4.1) generated by parametric dependence of 
wo on S, using the model (4.7) as the simplest example. 

In the short-wave limit the problem of describing the wave kinematics reduces to the 
case studied in detail in g3 .1  and 3.2. The type of wave evolution is determined by the 
flow geometry at the corresponding depth. The value 

prescribes the type of wave evolution in the same way as A 2  in the case of shearless flow. 
The existence of the two different wave guides can generate some interesting 

qualitative effects. Consider flows where 

A:+ df = A2B2[( 1 --/3~,)~ - 2$y-?] [( 1 - O ~ Z ~ ) '  - 2a2y-*] < 0. (4.10) 
Then, wave evolution in one wave guide will be reversible, while in the other one it will 
be irreversible. For an oceanic seasonal thermocline, typical vertical scales of current 
variability often exceed those of stratification, i.e. in terms of the scales a, /3 and y, 
(a2+p2) 4 y2. Under this condition the inequality (4.10) reduces to a realistic 
assumption that one of the current velocity components is small at the pycnocline. 
Then the wave propagating in one direction (with S positive) will be trapped, while the 
wave with negative S will not. This can cause noticeable anisotropy of the wave field. 

4.3.2. Internal-wave dynamics in stratijied flows with constant vertical shear 
Wave dynamics within the model (4.7) can be treated in a very similar way to the case 

of $3.2. Non-trivial features of the dynamics are mainly caused by vertical 
redistribution of the wave energy. Here we shall discuss qualitative features of the 
internal-wave dynamics. Some formulae are given in Appendix C. 

The presence of the vertical shear of the mean current changes short-wave 
asymptotes of the dispersion relation and eigenfunctions principally. So, these 
asymptotes do not tend to those of $3.2 when a+O, /3+0. This is an additional 
illustration of the principal importance of taking the presence of even weak shear into 
account for wave dynamics in the short-wave limit. 

Infinite growth of the wave amplitude is caused both by a vanishing of the 
Brunt-Vaisala frequency at the depth of localization and by a faster decrease of the 
wave's vertical scale than in the shearless flows in $3.2 (wave vertical focusing). The 
simplest asymptotic procedure gives an expression like (3.1 1 a, b) for caustics : 

2; = & 2/2/y. (4.8) 

4* = M 1  - /3(z2+2/2 /Y) l [1-a(z ,+2/2 /Y) l  (4.9) 

(4.1 1) 

Here f, and f, are functions ($2) of the initial wave parameters and mean flow 
characteristics only, quite similar to f, and f 2  in $3.2. The expressions for el, e2 as 
functions of a, /3, y are too cumbersome to write here. It seems that only ordinary 
caustics (at finite values of t )  ciin exist in this case. As t --f 00 the wave-packet 'volume' 
grows linearly in the (x, y)-plane and this causes a function-amplitude decrease. 
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FIGURE 7. The refraction mechanism of internal waves which are trapped by the three-dimensional 
current. While the depth of the internal-wave localization depends on the wave parameters (its wave 
vector and frequency) different wave-packet spectral components are ‘glued’ to the mean current at 
the different depths. Only dispersion of the wave energy, but not its focusing, may occur in this case. 
The volume of the wave packet (phase volume in coordinate space) is shown by solid lines. This 
volume is determined by the streamlines (dashed) to which the wave-packet’s harmonics are ‘glued’ 
and the dispersive diffusion of the packet. 

Figure 7 gives a sketch of this effect. Each spectral component has its own limiting 
streamline, at its own depth of localization. As the streamlines at the two neighbouring 
depths diverge infinitely in our model, different harmonics ‘glued’ onto their own 
streamlines diverge too. This can be considered as a shortcoming of the model (4.7). 
The ray family in figure 7 is shown in the case when the depth of localization is a 
function of the wave parameters. Dotted lines are streamlines at different depths and 
the bold line depicts the packet trajectory in the (x ,  y)-plane and the change of depth 
of its localization. Note that in the model under consideration the dependence of the 
depth of localization d(z,) is in the second term w1 of the Hamiltonian (see Appendix 
B). Hence the variation of d(z,) is a relatively weak effect of the same order as the 
intrinsic motion of the wave packet. 

Some of the properties of wave dynamics derived here are artifacts of the model. 
Actually, the processes of interest are localized at the periphery of the pycnocline, 

where ZV+ 0. In typical ocean conditions with strong stratification the wave-amplitude 
growth due to z ,  pushing out to the periphery of the pycnocline is obviously limited. 
Thus, the expressions given in Appendix C have a clear physical meaning of 
intermediate asymptotics and, therefore, we can use them for a qualitative description 
only. The asymptotics (C 4) show the direction for further development of our models. 

We conclude that vertical focusing of wave motion at a particular depth is the 
principal determinant of the internal-wave dynamics in the case of arbitrary flow. 
Other mechanisms, as we have seen, can dominate at the intermediate stage of 
trapping. Thus we come to the necessity to consider models in which wave propagation 
depends on the vertical inhomogeneity of the mean shear. 
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4.4. Internal waves in the ocean with dominant vertical mean flow inhomogeneity 
The key result of the previous $4.3 is the principal influence of the variation of the 
depth of localization on the dynamics of short internal waves. This influence may be 
weak when a vertical inhomogeneity of density stratification prevails and it vanishes 
when intrinsic motion of wave packet is neglected. The artifacts of the model discussed 
above make it necessary to consider advanced models. With more realistic features of 
the waveguide (for example, buoyancy frequency does not tend to zero) these models 
can show new physical effect of fundamental importance : the variation of the depth of 
localization occurs in the short-wave limit when the intrinsic motion of a wave packet 
is neglected. Further, we shall discuss one of the models of this type: 

U = Ay(1 + $ X ~ ( Z - Z ~ ) ~ ) ,  V = Bx(1 +$‘(z-z~)~), N = No = const. (4.12) 

Here constants A, B, (al, IpI have a similar sense as in (4.7) (a2, p2 can be negative). For 
the depth of localization we get 

aZAaz, +p2Bbz2. 
a2Aa + $Bb ’ z, = (4.13) 

z, is the key parameter for our problem. We shall concentrate our further discussion 
on this characteristic. Expressions for the other characteristics are given in Appendix 
D. 

4.4.1. The behaviour of the depth of localization 
The specific feature of the model (4.12)’ unlike the model (4.7), is that the depth of 

localization’s dependence on the wave parameters appears in the short-wave limit. In 
our model d(z,) depends on the two variables a and b only. The curves w(a, b) = const 
which determine the variation of the depth of localization are the second-order curves 
and, hence, the system can easily be analysed. We shall confine our analysis to 
qualitative illustrations. 

The type of the curves w(a, b) = const depends on the sign of 

A i b  =: a’p - :(a2 + p2 + h2) 

exclusively (i.e. on the vertical inhomogeneity parameters only). From the evident 
inequality (kx- 1 ~ ) ~  2 0 in the (a, b)-plane we have 

S2 2 4ab. (4.14) 

The inequality (4.14) gives us ‘transparency zones ’ for a harmonic with fixed S. A wave 
packet moves in the (a, 6)-plane dong the segments of the curve w,(a, b) = const 
bounded by the points of intersections of this curve with the hyperbola S2 = 4ab. The 
possible trajectories in the (a,b)-plane are shown in figure 8. We distinguish two 
different regimes depending on the behaviour of z,. 

The finite region of motion in the (a, b)-plane corresponds to the periodic evolution 
of z,. When AEb c 0 (figure 8a, b) the motion is ‘finite’ regardless of the initial wave 
parameters (S, a,, b,,). The case of figure 8 (c) is a special one as a wave can move along 
two different segments of the curve, depending on a, and b, (but not S). We distinguish 
this case because there are no similar transformation regimes in the model (4.7), where 
transformation is determined by parametric dependence on S only. 

We note that z, tends to infinity at the point a = 0, b = 0. This fact may be 
considered as a shortcoming of the model (4.7) and interpreted as follows. In the model 
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FIGURE 8. Short internal-wave trajectories in the model (4.1) in the (a,b)-plane depending on the 
mean-current field geometry (values of constant A, B, N, a,fl and wave-packet parameters (value of 
S). The hatched region is the non-transparency region where S 3  < 4ab (i.e. S2 < 4k010x,y0). When 
o(a, b) = const is an ellipse (a, b, c) a(t) and b(t) vary periodically with time (this does not mean that 
x( t )  or k(t) are periodic functions). When w(a, b) = const is a hyperbola, the situation when la1 
and lbl grow infinitely is also possible (see e). It is easy to show that intersections of the curves 
w(a, b) = const and S2 = 4ab give the simple reflection point where the reflection lasts a finite interval 
of time. Points where @(a, 6) = const is tangent to S2 = 4ub are reached asymptotically in an infinite 
time, V). 

(4.12) a particular ‘degenerate’ direction exists where there is no extremum of the 
current velocity which determines the short-wave propagation. It can also occur in the 
more general situation (4.1) as well and more than a single direction of ‘degeneracy’ 
may exist. In these cases wave propagation is determined by the density field guide or 
by density and current values at the ocean surface or bottom. In our model we have 
not taken into account these bounds on z,. It does not appear to be of great 
importance as it can be shown that the wave achieves these critical points within a finite 
time. Moreover, trajectories exist which do not intersect the point a = 0, b = 0 (figure 
8 c). 

When A$ > 0 the evolution depends significantly on the initial wave parameters. 
Besides the case of figure 8(e) in which o(a, b) = const and S2 = 4ab have no common 
points, the situation exists when both finite and infinite regimes are possible (figure 
8.3 depending on the initial values of a,, b,. 

We stress that all the criteria which determine whether a regime of transformation 
occurs are given by inequalities in terms of the initial wave parameters (by the number 
of points of intersections of w,(a, 6)  = const, S2 = 4ab). This means that effects related 
to the type of trajectory in the (a, b)-plane are structurally stable. In other words, the 
neighbour harmonics of the wave packet will evolve in a similar way. It should be 
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stressed in connection with the case presented in figure 8 (f), that it takes infinite time 
for the packet to achieve the point of tangency of S2 = 4ab and w,, = const. One should 
consider the situation of figure 80’) as structurally unstable. 

4.4.2. Internal-wave kinematics in ihe model of dominant mean shear vertical 
inhomogeneity 

The qualitative analysis of the behaviour of the depth of localization z, presented 
above can easily be combined with the general properties of the model (4.1) which were 
considered in $4.2. This synthesis allows one to analyse the internal-wave kinematics 
in original variables and to preview the possible types of wave evolution. The case of 
the monotonic variation of a and b and, hence, relatively simple variation of z, is of 
less interest as it does not differ principally from the case of the model of g3.2. 

The most interesting dynamic regime occurs when z, is changing periodically with 
time. The terms A, are changing periodically as well. But the mean (over period) value 
Ji‘+*didf does not equal zero in general case. Hence there are no structurally stable 
periodic motions in original variables for the model under consideration. So, this 
model demonstrates fairly well one of the properties of the internal-wave dynamics in 
the general model (4.1). 

Figure 7 shows sketches of the different possible types of internal-wave trajectory for 
the general model (4.1). The same picture holds for the model (4.12). The wave 
trajectories are more intricate than in $3. The reasons for reversibility of the motion in 
terms of changes in the angle variables are evident : the current at the different depths 
has different directions and the wave ‘feels’ it through changes in z,. 

Two principally different types of wave evolution can be distinguished depending on 
the sign of 

A,dt < 0 ( i =  1,2,3,4). I:w 
In the first one the wave trajectory twists in the (k,I)-plane and untwists in the 

(x,  y)-plane (perhaps in limited range of angles). When our local analysis breaks down 
the WKB-approximation will become invalid as well while (kl+ 0. 

In the second case all our approximations remain valid while JkJ + co and 1x1 -to. 
The wave packet ‘falls’ into the point x = 0. It is easy to take into consideration 
intrinsic wave motion and to show the validity of local analysis in this case as well. We 
shall not dwell upon this here. Whik there is a range (in k, x)-space) of the wave initial 
conditions, where this ‘falling’ into the centre of eddy (4.1) takes place, we can say that 
a certain share of the internal-wave-field energy will be localized in the immediate 
vicinity of the eddy axis when t is sufficiently large. 

Evidently, both horizontal and vertical inhomogeneities are taking part in the 
complication (relating to the case of $3) of trajectories. Thus, there is no sense in 
interrelations of elliptic trajectories in the model of $3 and spiral trajectories of the 
model under discussion, and new features of the short-wave evolution discussed above 
prompt us to introduce a new concept of ‘spectral-spatial focusing’ of an internal wave. 

4.5. On the spectral-spatial focusing of internal waves due to trapping 
We distinguish these two concepts (spectral and spatial focusing) on the basis of 
concepts that were introduced in $3. When z, = const, different spectral components 
are generally trapped at different locations owing to the dispersive effects taking place. 
However, different trajectories with a fixed wave vector are focused along some curves, 
that is spatial focusing takes place. 
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To understand the spectral focusing mechanism we shall return to the analysis of 
$3.3. We have noted that the effect of spatial focusing of different harmonics at the 
same point is not the consequence of the ‘degenerate’ model only. We have obtained 
the same phenomenon in a non-solenoidal current velocity field in the two-layer-of- 
localization model of $4.2. This note allows us to sketch the following model for this 
mechanism. 

While internal waves in the short-wave limit feel an ‘effective’ velocity field 
depending on z, only, we can simplify our problem by reducing it to this two- 
dimensional velocity field. What are the specific features of this field? Let us calculate 
its derivatives, taking into account that z, depends on x: 

For the divergence in the model (4.12) we have 

(4.15) 

By integrating (4.15) over a range of angles we can obtain the total flux for the waves 
of fixed intrinsic frequency from this angle range: 

* sin cp cos cp (sin cp + cos cp) 
(a2Acoscp+$Bsincp)3 

v:. U,,, = n-’A4B2a (4.16) 

We shall specify cpl,cpz below. 
Taking cpl = 0, cp2 = 2n we obtain an expression containing a singularity. The 

principal value of (4.16) does not equal zero in the general case. To avoid this 
integration and to make our model more realistic we shall confine the depth range and, 
thus, the integration range. Assume the fluid surface to be at z = 0 and the bottom at 
z = H .  The depth z,, consequently, varies from 0 to H. When z ,  = 0 or z, = H and 
the velocity field is solenoidal, and then the divergence of the effective velocity field is 
zero in a certain range of angles. But the integral divergence (4.16), generally, does not 
equal zero. Its sign may be different and different types of wave evolution can occur: 
divergence or convergence of the wave trajectories such as in g4.2 and 4.4 takes place. 

We note that the divergence integral (4.16) does not depend on lkl as we take the 
short-wave limit and allow vertical non-uniformity of the velocity to dominate 
absolutely. By taking into account density stratification it is easy to obtain the 
dependence of the divergence on lkl even in the short-wave approximation. Then it can 
be shown that the efficiency of spectral and space focusing increases as Ikl increases. 

As we have seen, a good understanding of these phenomena and, sometimes, some 
evaluations of its efficiency can be achieved by analysis of the two-layer-of-localization 
model. In such a model the divergence of the effective velocity field depends on the 
velocity discontinuity across the rays dividing the regions of different depths of 
localization. 

4.6. Discussion 
All the models considered above are particular cases of a more general model (4.1). The 
analysis of these particular cases was necessary in order to introduce some new 
concept, which are helpful for understanding the general problem. 

We have established the dominating role of vertical inhomogeneity of the current in 
the kinematics and dynamics of internal waves. We have introduced and advanced the 
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FIGURE 9. The analogy between the wave packet evolution (within the model (4.1)) and the classical 
particle motion in a potential field along a funnel-like surface. There are two first integrals of this 
motion : the energy of the particle (the sum of kinetic and potential energies) which is similar to the 
wave frequency o, and the kinetic impulse projection which is like the integral S for an internal wave 
packet. The particle which falls into thi.s ‘funnel’ is accelerated .and tends infinitely to the point 
x = 0 like the internal-wave quasi-particle. 

new concept of ‘the depth of localization’ z,, depending on both the hydrophysical 
mean fields and the wave kinematical parameters (wave vectors). The depth of 
localization is a good physical concept which illustrates the transformation of a real 
three-dimensional velocity field into some family of two-dimensional ‘effective velocity 
fields’. Each element of this family is determined by the initial wave parameters 
because of the dependence of z ,  on k. Thus, the concept enables us to reformulate (to 
some extent) our original three-dimensional problem in terms of well-known problems 
of two-dimensional hydrodynamics. The specific features of this new problem lie in the 
dependence of the type of effective velocity field on the spatial variables, and in the 
parametric dependence of this field on the initial wave parameters. Even when the real 
velocity field is smooth and solenoidal, the effective current appears non-solenoidal 
and singular. The effective velocity singularitik act similarly to the point sources and 
sinks in hydrodynamics. 

We now elaborate on the above-mentioned analogy with the motion of classical 
particles in a potential field of a special type (figure 9). Consider a particle moving on 
a funnel-like surface in a common gravitational field. The vertical component of its 
kinetic momentum is conserved (an analogue of our first integral S). The particle has 
a radial component of velocity and its angle varies periodically with time (an analogue 
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of angle variable RJ. The depth of the particle (or its momentum Qt) grows infinitely 
and the particle falls infinitely along the spiral-like trajectory. Variables a and b are 
kinetic momentum components, which vary periodically with time under gravitational 
force (an analogue of gyroscope precession). 

This analogy gives us a new view on the internal-wave dynamics problem. The 
existence of ‘ funnels ’ for internal-wave-packet particles means specific irreversibility in 
a conservative system. We have got ‘black holes’, well-known in astrophysics, in a 
classical ‘ Internal-Wave Universe’. The singular surface of an infinite funnel 
corresponds to the singular effective velocity field in our problem. We stress that these 
singularities or ‘holes’ occur in generic situations with smooth ambient density and 
velocity fields and therefore the ‘effective’ mean flows should have a multi-hole-like 
structure. 

5. Discussion and conclusions 
A part of our programme, whose final goal is to find out the role of large-scale 

inhomogeneities of hydrophysical ocean fields in guided internal-wave dynamics has 
been realized in this paper. We have identified and investigated some generic 
mechanisms governing the evolution of internal waves in an inhomogeneous ocean, 
and some general tendencies of internal-wave evolution. This has been done using 
comparatively simple models. 

A set of models which corresponds to the different types of vertical structure on the 
mean flows has been considered. It has been shown that different scenarios can occur 
depending on the type of inhomogeneity. 

The main conclusion of our investigations is that : irreversible dynamical evolution 
of internal waves into small-scale horizontal and vertical ranges inevitably takes place 
under some very general assumptions about the structure of the ocean’s hydrophysical 
fields and over a wide range of internal-wave parameters. 

Moreover, the most intense internal-wave transformation by currents in many cases 
appears to occur mainly in horizontally and vertically strongly localized regions 
(because of wave packet ‘gluing’ to the mean current and the non-dispersive focusing 
of internal waves as mentioned above). This conclusion has many physical 
implications; for example, it permits us not only to simplify the mathematics of the 
problem (by exploiting the analogy with particle motion in a simple potential field), but 
as the problem reveals a conceptual resemblance with well-known problems of physics, 
these might help one in determining strategic directions of future investigation. 

The main question for oceanic internal-wave investigators still remains the one 
formulated by Briscoe (1975): ‘where does the internal wave energy come from, where 
does it go, and what happens to it along the way?’ In this paper we have attempted to 
answer part of this question : what is the role of the internal-wave evolution tendencies 
discovered here in the internal-wave degeneration processes in the ocean? This 
question has an essential resemblance with the well-known astrophysical problem of 
‘black holes’ as the ‘substance devourer’. 

Another analogy is the hydrodynamical one, which has been introduced on the basis 
of the model (4.1). The singularity of the effective velocity field connected with the 
phenomenon of trapping is similar to a well-known problem of hydrodynamics - the 
problem of point sources and sinks. Hence, a straightforward idea for further 
investigation is to construct these sources and sinks by transforming generic current 
and density fields, which internal wave kinematics depends on, into an effective current 
field V,,,. As the specific features of this transformation are investigated, the 
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hydrodynamical analogue should help us to develop our analysis for more general 
problems. 

Another natural direction for further investigation is the extension to a higher order 
of approximation of the analysis of the ray equations (2.2), to consider the intrinsic 
motion of the internal wave packet. As wave-packet 'gluing' to the mean flow takes 
place it allows one to change to the! transformed curvilinear coordinate system moving 
with the mean flow. This promises to be useful both for the analysis of local situations 
discussed above and for developing the 'non-local' analysis of trapping. 

This is an outline of the most promising, from our point of view, avenues of further 
investigation of the effect of trapping within the same paradigm. 

Our investigation has provided sufficient grounds to suppose the existence of a 
certain strong tendency for internal-wave-field evolution into the small-scale range. 
Now we certainly cannot specify quantitatively the importance of this tendency in 
internal-wave dynamics in the ocean. To answer this question we must come out of the 
framework of our models and, first of all, take nonlinearity into account. Work in this 
direction is in progress now. 

The authors are grateful to G. Watson for his valuable comments on the first draft 
of the work. The hospitality of Royal Netherlands Meteorological Institute at De Bilt 
and l'lnstitut Mecanique Statistiqiie de la Turbulence at Marseille (Luminy), where 
part of this work was done by ow: of the authors (V. I. Shrira), is appreciated. 

Appendix A 

canonical momenta : 
There are four basic types of canonical transformations with S and a or b as 

(A 1) 
S,  = kx + ly, Q ,  = -In (klp), 
El = a == ky, R,  = - I lk ;  

S ,  = kx + ly, Q, = -In ( l /p ) ,  1 
E 2 = b == lx, R ,  = - k / l ;  

s3 = kx + 6, Q3 = In ( Y I P ) ,  1 
E 3 = a = =  ky,  R 3 = x / y ;  

S,  = kx+ly ,  Q, = In(xp), 1 
E 4 = b == Ix, R4 = y / x .  J 

Here p is a constant chosen to make yp,  k lp ,  xp, l / p  dimensionless, S,, E, (i = 1,2, 
3,4) are new canonical momenta, Q,, R, are canonically conjugated coordinates. 

Appendix B 

be found from (4.2): 
The explicit expression for the depth of localization z ,  in the model (4.7) can easily 

2(aAa+pBb) 
y(w - Aa - Bb + a, Aaz + p, Bbz) . (B 1) z ,  = ___ 

The dispersion relation is obtained from (2.10) in the form 
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where G = w-Aa-Bb+aAaz,+/3Bbz2, g = 1/2(aAa+bBb)/y. 

powers of lkl: 
The explicit expression for w can be presented in the form of an expansion in inverse 

w = @,(a, b) + q ( k ,  x, 1, y )  + o(lkl-i), 
wo = Aa+ Bb-aAaz,-BBbz,f 1/2(aAa+BBb)/y, 

(2n + 1) ;  N2yo(aAa + BBb) 4 
w1 = & 

2 [ 1/2(k2+f)  I -  
Using (B 2) we get the short-wave asymptotes of (B 1 ) :  

Appendix C 

velocity A (amplitude) can be written in the form 
According to definition (2.12) the maximal-over-depth value of the wave vertical 

A2 - [w-k. U(z,)13/[N2(~,)d(~,)1, (C 1) 

where [ w - k -  U(z,)I3 x G3(l -g2/G2)3, N2(z,) x Nt(1 -gZ/G2), (C 2) 

Quite similar to (3.6) we get for the case A: > 0 the following asymptotes: 

k-exp(A,t); I-exp(A,t); x-exp(A,t); y-exp(d,t). 

Then the parameters in (C 2), (C 3) can also be expressed in terms of t :  

[w - k. U(z,)I3 - const, N2(z,) - exp (- 24, t ) ,  d(z,) - exp (- A, t),  

A2 - exp (361) @(x, Y)/a(E,  or1. (C 4) 

In particular, the equality (C 1 )  can be rewritten 

A2 = const N(z,) - exp (A, t )  const (C 5 )  

Appendix D 
Consider the model 

U = Ay( 1 + !#(z - zJ2) ,  V = Bx( 1 + L#(z - z$), N = No = const. (D 1) 

have a similar sense as in (4.7) (a2, p2 can be negative). For the 

(D 2) 

(D 3) 

Constants A, B, lal, 
horizon of localization we get 

z, = (a2Aazl +$Bbzz)/(a2Aa + $Bb). 

N;-G:+~, G, = ((2n+ 1)/1/2)(2~;g,+g; G,);G~ 

While dispersion relation is 
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g, = (a2Aa + p2Bb) (k2 + P)-'? G, = w - Aa - Bb - ABubh2(a2Aa+ P2Bb)-', 

From (D 3) we obtain 
w = wo(a, b) + w,i:k, x) + o(lkl-;), 

w,, = No + Ac! + Bb + ABubh2(a2Aa + TBb)-', (D 4) 

We emphasize that w1 tends to zero as Ikl-4, while in the previous case w1 - 1kl-i. Short- 
wave asymptotic (D 4) corresponds to the structurally stable case (Borovikov & 
Levchenko 1987) in contrast to the intermediate asymptotics of the model (4.7). 

w ,  = f (n + i) Ni(a2Aa + $Bb)t (k2 + P)-! 
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